Do you agree with her statement?

1. REAL NUMBERS

1 MARK QUESTIONS

1. State the Euclid's division algorithm. Given positive integers a and b, there exist unique pair of integers q and r satisfying

a = bq + r, $0 \le r < b$ (Where a = Dividend,

b = Divisor, q = Quotient, r = remainder) 2 State the Fundamental Theorem of Arithmetic.

Every composite number can be expressed (factorized) as a product of its primes, and this factorization is unique, apart from the order in which the prime factors occur.

3. Varshitha said that sum of two irrational numbers need not be a irrational number. Give an example

Sol: Yes! Some cases it is true,

for example Let $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are two irrational numbers, then the sum of them is $2 + \sqrt{3} + 2 - \sqrt{3} = 4$ is a rational number.

4. Trishika said that 30, 030 is a product of consecutive prime numbers. Do you agree with her statement explain?

Sol: Yes! 30, 030 can be expressed as a product of consecutive prime numbers as $30,030 = 2 \times 3 \times 5 \times 7 \times 11 \times 13$

5. Find the HCF and LCM of least prime number and least composite number.

Sol: Least prime number is 2, least composite number is 4. the HCF of 2, 4 is 2 and LCM is 4.

6. Find the value of $\log_{5}^{625} - \log_{5}^{125}$?

Sol: Given $\log \frac{625}{5} - \log \frac{125}{5}$

=
$$log_5^{5^4} - log_5^{5^2} = 4 log_5^5 - 2 log_5^5$$

= $4 - 2 = 2 (\because log_a^a = 1)$

7. Evaluate $\frac{1}{2} \log 25 - 2 \log 3 + \log 18$?

Sol: Given
$$\frac{1}{2} \log 25 - 2 \log 3 + \log 18$$

$$= \log 25^{\frac{1}{2}} - \log 3^{2} + \log 18$$
$$= \log \frac{5 \times 18}{9} = \log 10 = 1$$

8. If two integers can be written as $a = x^3y^2$ and $b = xy^4$ where x, y are prime numbers. Find the HCF of (a, b).

Sol: Given $a = x^3y^2$, $b = xy^4$ $HCF ext{ of } (a, b) = HCF ext{ of } x^3y^2, xy^4 = xy^2$

9. If the least prime factor of a is 3 and least prime factor of b is 7 then least prime factor of (a + b) = ?

Sol: Given least prime factor of a is 3 and least prime factor of b is 7 then least prime factor of (a + b) = (3 + 7) = 10 is 2

10. Simplest form of

 $\log P + \log T = 2 \log 10 + \log I - \log R is$ **Sol**: $\log P + \log T = 2 \log 10 + \log 1 - \log R$ $=> \log P + \log T + \log R = \log 10^2 + \log 1$ $=> \log P + \log T + \log R = \log 100 + \log I$ => log PTR = log 100I => PTR = 100I $=>1=\frac{PTR}{100}$

2 MARK QUESTIONS

1. Write the rationalizing factor of $4\sqrt{2} + \sqrt{3}$ and find their product, which is rational or irrational? Comment?

Sol: Rationalizing factor of $4\sqrt{2} + \sqrt{3}$ is $4\sqrt{2} - \sqrt{3}$ now their product $(4\sqrt{2} + \sqrt{3})(4\sqrt{2} - \sqrt{3}) = (4\sqrt{2})^2 - (\sqrt{3})^2$ $(4\sqrt{2})^2 - (\sqrt{3})^2 = 32 - 3 = 29$ is rational 2. If $x = log \frac{x}{6} + 2 log \frac{x}{36} + 3 log \frac{x}{216} = 9$ **Sol**: $\log \frac{x}{6} + 2 \log \frac{x}{36} + 3 \log \frac{x}{216} = 9$

$$\Rightarrow log _{6}^{x} + log _{6}^{x} + log _{6}^{x} = 9$$

 $\Rightarrow 3 log _{6}^{x} = 9 \Rightarrow x = 6^{3} \Rightarrow x = 216$

3. Is it is possible to have two numbers their HCF as 16 and LCM as 380?

Sol: factors of $380 = 2 \times 2 \times 5 \times 19$ the product of factors cannot consists of 19 × 20 so the HCF as 16 and LCM as 380 is cannot be possible for any two numbers

4. How can you say that $\log \frac{512}{2\sqrt{2}}$ is rational number?

Sol: Let
$$\log \frac{512}{2\sqrt{2}} = x \Rightarrow (2\sqrt{2})^x = 512$$

=>
$$(2^{\frac{3}{2}})^x = 2^9$$
 (: 512 = 29)
=> $2^{\frac{3x}{2}} = 2^9 => \frac{3x}{2} = 9$

=>
$$3x = 18 => x = \frac{18}{3} = 6$$
(integer)

$$\therefore \log_{2\sqrt{x}}^{512} = 6 \text{ is a rational number.}$$

5. If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 then the relation between x, y, z is?

Sol: Let If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y} = k$$
, then

$$\log x = k (y-z), \log y = k (z-x),$$

$$\log z = k(x-y)$$

$$\log x + \log y + \log z = k (y-z+z-x+x-y)$$

=> $\log xyz = k (0)$ => $\log xyz = 0$.

6. Show that 12 " cannot end with the digit o or 5 for any natural number 'n'.

Sol: When we express 12 as product of primes we have $12 = 2^2 \times 3$ so now $12^{-n} = (2^2 \times 3)^{-n} = 2^{2n} \times 3^n$ prime factorization of 12 " are 2 and 3 but not 5 so 12 n cannot end with digit 0 or 5.

7. Prove that $5 + 3\sqrt{2}$ is irrational.

Sol: Let us assume $5 + 3\sqrt{2}$ is rational then $5 + 3\sqrt{2} = \frac{p}{q}$ where $q \neq 0$ and $p, q \in z => 3\sqrt{2} = \frac{p}{q} - 5$

$$=> 3\sqrt{2} = \frac{p-5q}{q} => \sqrt{2} = \frac{p-5q}{3q}$$
 where

 $\frac{p-5q}{3q}$ is rational and p, $q \in z$,

but $\sqrt{2}$ is irrational, an irrational number never be equal rational number, so our assumption is wrong

$\therefore 5 + 3\sqrt{2}$ is irrational

8. Show that any positive odd integer is of the form 4q+1 or 4q+3 where q is a positive integer.

Sol: Let a be a positive integer and b = 4 and $q \geq 0$ then by division algorithm $a = 4q + r, 0 \le r < 5, i,e., r = 0, 1, 2, 3$

if r = 0 then a = 4q (even)

r = 1 then a = 4q + 1 (odd)

r = 2 then a = 4q + 2 (even)

r = 3 then a = 4q + 3 (odd)

so any positive odd integer is of the form 4q

9. If $x^2 + y^2 = z^2$ then prove that $\log \frac{(x+x)}{y} + \log \frac{(x-x)}{y} = 2$

Sol: Given $x^2 + y^2 = z^2$ $=> z^2 - x^2 = y^2 => (z - x) (z + x) = y^2$

take log on both sides

$$=> \log {y \choose y} + \log {(z-x) \choose y} = 2$$

10. How will you show that $(17 \times 11 \times 2) + (17 \times 11 \times 15)$ is a composite number is explain?

Sol: Given $(17 \times 11 \times 2) + (17 \times 11 \times 15) =$ $17 \times 11 (2 + 15) = 17 \times 11 \times 17$

.. The given number

 $(17 \times 11 \times 2) + (17 \times 11 \times 15)$ has more than 2 factors hence it is a composite

4 MARK QUESTIONS

1. Use Euclid's division lemma to show that the square of any positive integer is of the form 3n or 3n + 1 for some

Sol: Let a be any positive integer and b = 3, a = 3q + r, where q > 0 and $0 \le r < 3$ a = 3q or 3q+1 or 3q+2

We have the three cases.

Case 1: when $a = 3q \Rightarrow a^2 = (3q)^2 = 9 q^2$ $=> 3 (3q^2) = 3n$ where $n = 3q^2$

Case 2: when $a = 3q+1 \Rightarrow a^2 = (3q+1)^2$

$$\Rightarrow a^2 = 9q^2 + 6q + 1$$

$$=3(3q^2+2q)+1$$

=3n+1, where $n=(3q^2+2q)$

Case 3: When a = 3q+2

$$\Rightarrow a^2 = (3q + 2)^2$$

= $9q^2 + 12q + 4$

$$=3(3q^2+4q+1)+1$$

$$=3n+1$$
, where $m = (3q^2 + 4q + 1)$

: The square of any positive integer is of the form 3n, 3n+1 for some integer n.

2. Use Euclid's division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1, 9m + 8 for some integer m.

Sol: Let a be any positive integer and b = 3, a = 3q+r, where q>0 and $0 \le r < 3$ a = 3q or 3q+1 or 3q+2

We have the three cases. **Case 1:** when $a = 3q \Rightarrow a^3 = (3q)^3 = 27 q^3$ $=> 9 (3q^3) = 9m$ where $m = 3q^3$

Case 2: when $a = 3q+1 \Rightarrow a^3 = (3q+1)^3$

$$\Rightarrow a^3 = 27q^3 + 27q^2 + 9q + 1$$

$$=9(3q^3+3q^2+q)+1$$

=9m+1, where $m = (3q^3 + 3q^2 + q)$

Case 3: When a = 3q + 2

$$\Rightarrow a^3 = (3q+2)^3$$

$$= 27q^3 + 54q^2 + 36q + 8$$
$$= 9(3q^3 + 6q^2 + 4q) + 8$$

=9m+8, where $m = (3q^3 + 6q^2 + 4q)$

: The cube of any positive integer is of the form 9m, 9m+1, 9m+8.

3. Prove that $(\sqrt{3} + \sqrt{5})$ is an irrational

Sol: Let us assume $\sqrt{3} + \sqrt{5}$ is rational then

 $\sqrt{3} + \sqrt{5} = \frac{p}{q}$ where $q \neq 0$ and $p, q \in z = \sqrt{3} = \frac{p}{q} - \sqrt{5}$ $=>(\sqrt{3})^2=(\frac{p}{a}-\sqrt{5})^2$

B. Laxminarayana **Maths Senior Faculty** Hyderabad

9849386253

$=> 3 = (\frac{p}{q})^2 - 2\frac{p}{q}\sqrt{5} + (\sqrt{5})^2$ $=>3=\frac{p^2}{q^2}-\frac{2p}{q}\sqrt{5}+5$

$$= > \frac{2p}{\sqrt{5}} \sqrt{5} = \frac{p^2}{3} + 5 - 3$$

$$=>\frac{2p}{3}\sqrt{5}=\frac{p^2}{3}+\frac{1}{3}$$

$$=>\frac{2p}{p}\sqrt{5}=\frac{p^2+2q^2}{p^2}=\frac{p^2+2q^2}{p^2}\times\frac{q}{q^2}$$

$$=>\sqrt{5}=\frac{p^2+2q^2}{}$$

$$= > \frac{q}{q} \sqrt{5} = \frac{q^2 + 2q^2}{q^2} = \frac{p^2 + 2q^2}{q^2} \times \frac{q}{2p}$$

$$= > \sqrt{5} = \frac{p^2 + 2q^2}{2pq}$$

$$= > \frac{p^2 + 2q^2}{2pq} \text{ is rational and p, q } \in \mathbb{Z},$$

but $\sqrt{5}$ is irrational,

so an irrational number never be equal rational number.

hence our assumption is wrong

$\therefore \sqrt{3} + \sqrt{5}$ is irrational

4. If
$$x^4 + y^4 = 83x^2y^2$$
 then prove that log $\left(\frac{x^2 - y^2}{9}\right) = \log x + \log y$

Sol: Given $x^4 + y^4 = 83x^2y^2$

subtract '
$$2x^2y^2$$
 on both sides
 $x^4 + y^4 - 2x^2y^2 = 83x^2y^2 - 2x^2y^2$

$$=>(x^2-y^2)^2=9^2x^2y^2$$

$$=> (x^{2} - y^{2})^{2} = 9^{2}x^{2}y^{2}$$
$$=> (\frac{x^{2} - y^{2}}{9})^{2} = x^{2}y^{2}$$

$$=>(\frac{x^2-y^2}{2})^2=x^2y^2$$

$$\Rightarrow (\frac{x^2 - y^2}{9})^2 = (xy)^2 \Rightarrow \frac{x^2 - y^2}{9} = xy$$

$$\Rightarrow \log\left(\frac{x^2 - y^2}{9}\right) = \log\left(xy\right)$$

$$\Rightarrow \log\left(\frac{x^2 - y^2}{9}\right) = \log x + \log y$$

5. If the area of the rectangular park is 2028 with highest possible common factor in its length and breadth be 13. Write all possible pair of dimensions.

Sol: Given $1 \times b = 2028$.

Where $I = 13 \, a$, $b = 13 \, b$,

=> 13a ×13b = 2028

=> 169ab = 2028 => ab =12. The suitable pairs are (1, 12) (3, 4) so required pairs are $(13 \times 1, 13 \times 12), (13 \times 3, 13 \times 4).$

(13, 56) (39, 52) 6. Find the value of $\frac{1}{1+log_a^{bc}} + \frac{1}{1+log_b^{ca}} +$

$$\frac{1}{1 + \log_c^{ab}}$$

Sol: Consider $\frac{1}{1 + log_a^{bc}} = \frac{1}{log_a^a + log_b^{ca}}$

 $=\frac{1}{\log_a^{abc}} = \log_{abc}^a$ similarly

$$\frac{1}{1 + log_b^{ca}} = log_{abc}^b \text{ and}$$

$$\frac{1}{1 + \log_c^{ab}} = \log_{abc}^c \text{then}$$

$$\frac{1}{1 + log_a^{bc}} + \frac{1}{1 + log_b^{ca}} + \frac{1}{1 + log_c^{ab}} =$$

$$log_{abc}^{a} + log_{abc}^{b} + log_{abc}^{c} = log_{abc}^{abc} = 1$$